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Abstract

We present the STEAK protocol, a proof of stake (PoS) protocol designed to
serve as a sustainable and efficient source of randomness for dApps on the Cardano
blockchain. The protocol is based on the Ouroboros protocol (the same protocol
powering Cardano itself) and is implemented on top of Cardano using smart con-
tracts. It aims to address the limitations of existing randomness solutions based
on proof of work (PoW), such as the Fortuna protocol. By utilizing PoS instead
of PoW, STEAK inherits all the advantages associated with PoS, including greater
energy efficiency, reduced environmental impact, and enhanced scalability. STEAK
allows stakeholders to register their stake in the network by creating stake pools and
rewards them for creating blocks with a small share of the stake token. DApps can
rely on frequently produced blocks that contain non-manipulable and unpredictable
hashes. The protocol ensures sustainability, randomness, and security through its
design and governance mechanisms.

Disclaimer This paper is intended for general information purposes only. It is not
intended as investment advice and should not be used to make any investment decision.
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1 Introduction and Motivation

Randomness on blockchains is desired for various applications, such as games and lotter-
ies. However, the Cardano Blockchain natively does not provide a source of randomness,
on the contrary it has a strong focus on determinism and predictability.

Fortuna [6], launched in September 2023, is a useful source of randomness on the
Cardano blockchain. However, Fortuna is a proof of work protocol, which has several
downsides, among them unclear sustainability and high effort of block production. As of
April 2024, block production on Fortuna is infrequent, with new blocks being generated
only every few days [10], and the cost of mining exceeds its rewards by large. Moreover,
the protocol is not designed to serve as a direct source of randomness, requiring additional
infrastructure to be built on top of it [9]. Most crucially, the protocol lacks native
upgradeability, requiring a hard-fork to change its parameters.

This is where STEAK comes in. We propose a proof of stake protocol based on
Ouroboros [5] that is designed to serve as a source of randomness and is sustainable, as
it does not require expensive proof of work mining. It features native upgradeability.
Through a sustainable and slow distribution of rewards, the protocol is designed to
operate indefinitely and reward participants for their contribution to the network.

1.1 Background

In this section, we provide some background on the Cardano block chain, a short history
of randomness in smart contracts and the concept of proof stake we rely on.

Cardano and the EUTxO model The Cardano blockchain is a third-generation
blockchain that aims to provide a secure, scalable, and sustainable platform for decen-
tralized applications [1]. It distinguishes itself from other blockchains by its rigorous
scientific approach to development, peer-reviewed research, and commitment to sustain-
ability and interoperability.

Transactions on the Cardano blockchain are built on top of the extended UTXO
(EUTxO) model [3], which is based on the Bitcoin UTxO model and offers additional
features and capabilities. This model is designed to be deterministic and highly paral-
lelizable, enabling efficient transaction processing and scalability. However, the model is
incompatible with the widely adopted account-based model implemented on Ethereum,
making the Cardano Smart Contract environment incompatible with existing smart con-
tracts tailored for the Ethereum Virtual Machine (EVM).

Randomness on Cardano By design, the determinism of the chain makes it difficult
to implement randomness to be used by Smart Contracts on the Cardano blockchain
[4]. Usual approaches have to rely on off-chain sources of randomness through oracles or
commit schemes [2]. Oracles are not suitable for i.e. lotteries, as they can be manipulated
by the operator. Neither are commit schemes ideal, where an operator commits to a
random string s by publishing its hash h(s), revealing s after a certain deadline. The
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problem is that the committing party knows s before the reveal and can take benefits
from this knowledge.

Alternatively, verifiable randomness can be used. It relies on the hash of a future
block at a specified slot as a source of randomness. This hash is unpredictable but
verifiable, as it is determined by the block at the specified slot. However, the caveat
of this approach is that blocks are not visible to on-chain smart contracts. Therefore,
users that rely on the randomness have to trust the operator of the contract that the
randomness was generated correctly. They can at most sanction abuse after misuse,
which is evident through the shared agreement on the actual block hash in the real
world. The approach misses high vulnerability use cases though where a single case of
abuse can be sufficiently catastrophic to make its application unacceptable.

The Fortuna protocol [6] was proposed as a solution to this problem. It is a proof
of work protocol that generates a random number (the block hash) as part of the block
generation process. However, the protocol is not designed to serve as a persisting source
of randomness. In other words, it is impossible to restore an older state of the chain
based on its current status. This limits the ability to prove on-chain that a specific block
is the first minted after a given time for example. Therefore it requires an additional
derivative chain as data source for dApps building on top of Fortuna [9].

There has been another proposal for a randomised oracle on Cardano that relies
only on a verified random function [8]. However, the technical documentation is meager
and open-source implementations are not released until the completion of the project,
making all statements about security, usability and fairness pure speculation. The doc-
umentation refers to a verifiable random function relying on a secret key owned by the
lottery operator. Our conclusion from this is that the function does not achieve the
high standard of unpredictability, because the owner of the secret key can predict the
result of the oracle. For sufficiently delicate operations where the operator can not be
trusted, such as a lottery, such an approach is unsuitable. Especially in the domain of
pseudonomous blockchains, this allows the operator to act maliciously as an anonymous
entity and gain benefit from its insider knowledge.

Proof of Stake & Ouroboros Proof of stake is an approach to consensus that is
more sustainable than proof of work. Our implementation is based on Ouroboros [5], a
proof of stake protocol that is implemented in Cardano. In this protocol, stakeholders
register their stake in the network. Time is divided by slot length and each slot a single
block can be appended to the block chain. Stakeholders are selected pseudo-randomly
to create blocks in each slot based on the fraction of their stake on the overall stake
in the network. They are rewarded for creating blocks with a small share of the stake
token. This setup creates a natural incentive for stakeholders to act in the best interest
of the network. Moreover, it is more sustainable than proof of work, as it does not
require expensive mining hardware to decide the next block producer and preserves
protection against Sybil attacks and censorship. Finally, stakeholders in the network are
incentivized to hold and stake the token in order to participate in the network by the
distributed rewards.
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2 STEAK Protocol

The STEAK protocol is a proof of stake protocol that is designed to serve as a source of
randomness on the Cardano blockchain. It is based on the Ouroboros protocol [5], which
is a proof of stake protocol that is designed to be secure, scalable, and sustainable. The
main feature is a chain of consecutive blocks, where each block is created by a stakeholder
that is selected pseudo-randomly based on their stake in the network.

Important properties of the protocol are:

• Sustainability: The protocol is designed to be sustainable and operate indefi-
nitely without requiring expensive proof of work mining (cf. Section 2.1).

• Security: The protocol is designed to be secure and resistant to attacks and ma-
nipulation. In particular, participants cannot manipulate a block hash to their
advantage to influence either the randomness or the slot leader selection (cf. Sec-
tions 2.2 and 2.3).

• Governance: The protocol allows upgrades through built-in governance, giving
immediate utility to the protocol token next to the staking rewards. Further, the
token can be used to vote in a DAO that controls the protocol (cf Section 2.4).

• Randomness: The protocol is designed to serve as a source of randomness that
can be used by smart contracts on the Cardano blockchain. In particular, no
participant or observer can reliably predict the block hash of a given slot number
in the future. Moreover dApps can rely on a block at a predetermined slot to be
minted in time and contain a random number as a hash (cf. Section 2.5).

To participate in the protocol, stakeholders have to lock up their stake in a smart
contract and register their pool with the protocol.

2.1 Stake Pools

Stakeholders can register their stake in the network by creating a stake pool. A stake
pool is a smart contract that is registered with the protocol and contains the stake of
the pool owner. The stake cannot be withdrawn unless the pool is deregistered from the
protocol. To allow pooling of funds in stake pools, the protocol allows smart contracts
as pool owners to register with the protocol. This allows multiple stakeholders to pool
their funds together and participate in the protocol as a single entity.

The protocol checks during block creation that the pool owners signed the transaction
with their private key. In case of smart contract owners, a corresponding withdrawal has
to be present in the transaction, serving as an indicator of the smart contract ”observing”
the transaction.

To disincentivize pool spamming, i.e., prevent stakeholders from creating multiple
pools to block other stakeholders from participating in the network, pool creation is
subject to a fee that is proportional to the amount of total stake in the network. This
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Figure 1: A sketch of the block creation process in the STEAK protocol. Each slot, a
slot leader gets to create a block and submit it to the blockchain. The block hash is
determined from the preceding block. The slot leader is determined based on the stake
of each protocol participant. It may happen that slots remain unfilled such as slot 2 and
4 in this example.

fee is added back into the supply of stake tokens to be distributed as rewards for block
creation.

2.2 Block Creation

Blocks are created by stakeholders that are selected pseudo-randomly based on their
stake in the network. The selection process is based on the Ouroboros protocol, which
is designed to be secure and unpredictable. Every slot, a slot leader is elected to create
the next block. The slot leader is the only stakeholder that is allowed to create the block
for that slot.

The protocol uses a verifiable random function (VRF) to select the slot leader. Specif-
ically, it conducts a lottery among all registered stake pools, where the probability of
winning the lottery is proportional to the stake of the pool. The random seed for the
lottery for block bt is the current hash of the preceding block bt−1 and the current slot
number. The current hash of the preceding block bt−1 can only be influenced by the
producer of block bt−2. The slot number can not be influenced at all. This ensures
that the selection process can not be influenced to increase ones own chances at getting
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Figure 2: Token distribution over time starting at 20% initial token distribution.

elected for the next block, by moving dependencies further into the future. The process
of slot leader election and block creation is sketched in Figure 1.

The number of blocks depends on the length of a slot, which is a parameter of the
protocol. We propose a length of 60 seconds per slot, which results in a block roughly
every minute. Note that forks can occur in the network but are handled by the underlying
consensus protocol of Cardano. The protocol ensures that the preceding block is spent
to create the new block, which allows only one possible chain to persist in each given
fork of the Cardano protocol.

Such forks are possible, however, as a slot leader for k > j > i can create a block for
slot k as a successor to block at slot number i if it does not observe the block at slot
number j. Again, this depends on the local view of the network and is resolved by the
underlying consensus protocol of Cardano.

Note that, to increase randomness in the protocol, the protocol can elect several slot
leaders for a single slot. By adding the id of the producing pool to the hash of the current
block, it is harder to predict the next hash while it can also not be directly manipulated
by the block producer. This strongly increases the uncertainty about block producers.

2.3 Reward Distribution

Stakeholders are rewarded for creating blocks with a small share of the stake token. The
reward is distributed to the stake pool that created the block and is a fixed fraction of
the remaining tokens to be distributed in the network. We propose a fixed fraction of
c = 3

10·106 = 0.00003% of the remaining tokens to be distributed with each block.
A plot of the expected amount of distributed tokens over time is shown in Figure 2,

the mining rewards themselves can be found in Figure 3. Assuming an initial distribution
of 20%, after two years, an additional 11.7% of the total supply is distributed, and after
5 years, roughly 63.6% of the total supply is in circulation. Note that this distribution
schedule is very similar to the Bitcoin schedule, which halves the reward every 4 years.
In an analytical interpolation, the Bitcoin reward schedule would have c = 3.3

10·106 . In
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the STEAK scheme, the rewards halve roughly every 4 years and 5 months. The reward
scheme ensures a continuously high APR in the first years which slowly fades out to
around 5% after 6 years, assuming that all rewards are reinvested, as shown in Figure 4.

2.4 Governance and Upgrades

The protocol is designed to be decentralized and governed by the stakeholders in the
network. Stakeholders can vote on proposals to change the protocol parameters, such
as changing the reward distribution fraction or the slot length. Moreover, it is possible
to initiate a fork of the protocol by moving the stake to a new smart contract that
implements a new iteration of the protocol.

In an initial version, the governance is based on a simplified agreement protocol. Each
block B may contain auxiliary data d which is freely determined by the current block
producer. We capture whether the datum d of B represents a request for an upgrade in
the variable 1up(B). We now allow an upgrade of the protocol if n consecutive blocks
contain upgrade requests, i.e. {Bi}li=k, s.t.∀i ∈ [k, l] : suc(Bi, Bi+1)∧1up(Bi)∧n = l−k.

This approach has two important benefits:

1. Liveness: It can not happen that this protocol depends on the agreement of inac-
tive staking pools (which would block the process), because only blocks produced
by active participants are counted.

2. Representation: The protocol makes it sufficiently unlikely that a proposal will
be accepted if less than a fraction of x of the active stake support the proposal
when n is chosen adequately.

To compute n we will compute the probability of a proposal being accepted depending
on x and n. We will assume that no pools register or deregister during the n blocks. The
probability P (1up(Bi)) of block number i containing an upgrade request is y, where y is
the percentage of the total stake that is i) active and ii) approves the upgrade. Moreover,
the probability of P (∀i ∈ [k, l] : 1up(Bi)) =

∏
1up(Bi)

l
k assuming independence between

block production. Assume that y < x. Then P (∀i ∈ [k, l] : 1up(Bi)) < xn. This allows
to choose a suitable n so that proposals are only accepted with suitable agreement based
on x. An illustration of how difficult it is for a proposal to be accepted with x approval
for different n is presented in Table 1. As an additional safeguard, an admin key is
designated that is additionally required to approve the upgrade. This grants the admin
a veto right, but no option to unilaterally decide an upgrade.

Alternative Governance Models A generally more secure model would rely on a
proof that more than x of the total stake is in favor of the upgrade. This could be shown
by reconstructing the slot leader and its weight as part of the total supply. However,
this implies either significantly growing the chain state or reconstructing the entire list
of voting pools for each block during the proof, both of which are computationally
expensive or even infeasible. Note also that this approach could rely on the agreement
of inactive stake pools, which could block upgrades entirely.
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x
n

1 2 5 7 10 15 20

0.5
xn 5.0e-01 2.5e-01 3.1e-02 7.8e-03 9.8e-04 3.1e-05 9.5e-07

k slots 2 4 32 128 1024 32768 1048576

0.7
xn 7.0e-01 4.9e-01 1.7e-01 8.2e-02 2.8e-02 4.7e-03 8.0e-04

k slots 2 3 6 13 36 211 1254

0.9
xn 9.0e-01 8.1e-01 5.9e-01 4.8e-01 3.5e-01 2.1e-01 1.2e-01

k slots 2 2 2 3 3 5 9

Table 1: Values of xn for x ∈ {0.5, 0.7, 0.9} and n ∈ [1, 20]. The second row displays the
expected number of slots k until an upgrade-approving sequence would occur.

Instead, the governance process will upgrade to using MuesliSwap Onchain Gover-
nance [7], or a variation thereof, where we count stake pools towards the weight of the
vote. This allows the removal of the veto right entirely.

2.5 Usage as a source of Randomness

A derivative dApp that builds on top of the STEAK protocol can use the block hash
of a future block as a source of randomness. To ensure that the block hash of the
current block can not be predicted or manipulated, we force the miner to use a strongly
deterministic value to create the block: the serialization of the entire preceding state and
the current slot number. The addition of the slot number ensures that even based on the
preceding block, it is impossible to determine the next hash, as it is unclear which next
slot will be successfully minted. Further, if several producers are allowed for the same
slot, uncertainty increases as the hash of the block takes into account which of these
producers took the block. To further prevent that stake pools register or deregister in
order to increase their own odds at becoming elected a slot leader, we recommend a fee
for pool registration and deregistration that exceeds the staking rewards, thus making it
financially uninteresting to manipulate the state. Thus, this hash is unpredictable but
verifiable, as it is determined by the block at the specified slot. The dApp can use the
hash as a seed for a random number generator to generate random numbers for various
applications, such as games and lotteries.

An important feature of the STEAK protocol is that dApps can also trace back past
block hashes. Imagine a dApp where users lock funds until a certain slot j, and the
funds are distributed based on a random number generated from the first block hash
generated after that time. Note that if we use slots rather than block numbers, we can
exactly fixate a time until which funds are locked as opposed to relying on i.e. a block
number which has unclear bounds on when it will be minted. For this dApp we need the
ability to prove on-chain that a block is not only minted after j but also that it is the
first block minted after j. However, at any time, only one block is referencable on-chain,
the most recent block. It can happen that i) either no block is minted in the slot j + 1
because the elected slot leader did not submit a block or ii) the off-chain batcher has an

9



Block X

Slot Number: k

Hash: sha256(s(Y))

Block Number: n

Block Y

Slot Number: j

Hash: sha256(s(Z))

Block Number: n-1

Block Z

Slot Number: i

Hash: ...

Block Number: n-2

"First block after slot j"

Required blocks
to prove "X is first
block after slot j"

Block V

Slot Number: l

Hash: sha256(s(X))

Block Number: n+1

Block in current UTxO

Figure 5: A graphical depiction of how to reconstruct the first block after cutoff slot
j using the current state of the UTxO. This is necessary as dApp smart contracts can
only see the current UTxO and none of the history.

incentive to wait until after j + 1 for a block hash that suits its own purposes best [9].
Therefore we need to reconstruct a part of the chain that is long enough to reach beyond
j + 1, starting at j and ending at i >= j + 1, where i is the slot number of the latest
block of the chain, i.e. the block of the chain that is currently in the UTxO. This block
is the only block that can be passed to the dApp smart contract by reference because
only blocks in the current UTxO can be used as reference inputs to smart contracts. By
providing a reconstructed chain, the smart contract can verify that the provided block
X is indeed the first minted after j.

In order to achieve the chain reconstruction, an off-chain batcher can provide the
necesseary data to the dApp to reconstruct the chain from block V at slot i. In gen-
eral, the hash of follow-up block B′ of B is exactly the hash of B (i.e. B′.hash =
sha256(s(B))) in the STEAK protocol. Therefore, by providing B, the smart contract
is able to verify that B is indeed the predecessor to B′ by computing its hash. This can
be repeated indefinitely (up to the limits of computation given in the Cardano EUTxO
model) to reconstruct chains of arbitrary length grounded in the currently most recent
and visible block V of the staking protocol. A graphical depiction of the current UTxO
and the data passed in by an off-chain batcher is depicted in Figure 5. Note that the
simple governance protocol of Section 2.4 makes use of this history reconstruction and
thus already provides a Proof of Concept implementation.

Note that it can in general not be proven on-chain that the provided predecessors
of the current block exist in the chain, as past chain states are not visible on-chain.
However, it is sufficiently difficult to provide spoofed values for the predecessors of the
current block that it can be assumed that the predecessor was also part of the actual
chain when its hash matches.
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2.6 Bootstrapping

Bootstrapping of a proof of stake protocol is difficult [11]. A part of the staking tokens
needs to be distributed to participants in advance to the blockchain launching, because
participants need to already hold the token in order to participate in the protocol. We
are aiming to initially distribute 20% of the total supply to the community.

3 Conclusion

The STEAK protocol provides a sustainable and efficient source of randomness on the
Cardano blockchain. By utilizing a proof of stake consensus mechanism, STEAK ad-
dresses the limitations of existing randomness solutions, such as the Fortuna protocol,
which relies on proof of work. The protocol incentivizes stakeholders to participate in the
network by rewarding them for creating blocks and allows for decentralized governance
and upgrades.

The protocol’s design ensures sustainability, randomness, and security, making it
a valuable addition to the Cardano ecosystem. As the demand for reliable sources of
randomness grows, STEAK has the potential to become a widely adopted solution for
various applications, such as games and lotteries.

Future work may include further analysis of the protocol’s security properties, opti-
mization of the reward distribution schedule, and the development of additional features
and use cases. The results of this work may be integrated into the existing protocol us-
ing the built-in governance and upgrade mechanisms. The STEAK protocol represents
a significant step towards a more sustainable and efficient blockchain ecosystem, and its
implementation on the Cardano blockchain demonstrates the platform’s commitment to
innovation and progress.
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